How can archaeological objects or fossils transform to resist degradation for millennia or even millions of years? Could scientists and engineers learn from these processes to design new modern materials? Those questions are at the heart of the research interests of an international team led by Loïc Bertrand, Director of the IPANEMA European Research Platform on Ancient Materials at Université Paris-Saclay.

“Modern physics and chemistry provide tools and methods to study the composition and properties of materials from the arts, archaeology and paleontology,” says Bertrand. “A fascinating benefit is ‘paleo-inspiration’: new materials that emerge from in-depth studies of the exceptional properties encountered in a range of ancient and historical materials.”

In order to foster the development of innovative technologies based on ancient materials, the research team discussed these numerous opportunities in a paper entitled “Paleo-inspired systems: Durability, Sustainability and Remarkable Properties”.

Published in Angewandte Chemie International Edition, this paper reviews recent work on ancient chemical processes, including the formation of Roman concrete, synthetic fossils, and artists’ pigments such as Mayan and Egyptian blues. For instance, scientists are learning how to reverse-engineer the recipe of Roman concrete, based on volcanic ashes or recycled materials, as such simple practices could lead to buildings that exhibit durability far beyond the lifespan of modern Portland cement. Ancient concrete is also eco-friendlier in terms of the energy consumption required for its production. As “bio-inspired” research mimics biological properties to engineer new materials, “paleo-inspiration” can thus inspire more sustainable, durable, and innovative materials.

This review results from close interdisciplinary collaboration between four academic sites in France, Switzerland and the US. One of which, IPANEMA, supports synchrotron-based research at Synchrotron SOLEIL, the only infrastructure for heritage science at a large-scale facility. IPANEMA is a centre dedicated to the development of advanced methodologies of material characterisation in archaeology, paleo-environments, paleontology and cultural heritage.

IPANEMA also coordinates the scientific strategy of a new European initiative called the European Research Infrastructure for Heritage Science (E-RIHS). Through E-RIHS, international researchers will gain increased support for the in-depth study of ancient materials using a range of advanced methods.

Bertrand says: “Paleo-inspiration is an outcome of heritage studies that shows powerful promise to better connect Humanities and Natural Sciences in common endeavors and innovation.”